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Dispersion-managed soliton in a strong dispersion map limit

P. M. Lushnikov

Theoretical Division, Los Alamos National Laboratory, MS-B284, Los Alamos, New Mexico 87545, and
Landau Institute for Theoretical Physics, Kosygin Street 2, Moscow 117334, Russia
Received March 12, 2001

A dispersion-managed optical system with stepwise periodic variation of dispersion is studied in a strong
dispersion map limit in the framework of the path-averaged Gabitov–Turitsyn equation. The soliton solution
is obtained by analytical and numerical iteration of the path-averaged equation. An efficient numerical
algorithm for finding a DM soliton shape is developed. The envelope of soliton oscillating tails is found to
decay exponentially in time, and the oscillations are described by a quadratic law. © 2001 Optical Society
of America
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A dispersion-managed1 (DM) optical system is de-
signed to create low (or even zero) path-averaged
dispersion by periodic alternation of the dispersion
sign along an optical f iber, which dramatically reduces
pulse broadening. Recently, dispersion management
has become an essential technology for development
of ultrafast high-bit-rate optical communication
lines.2 – 8 The lossless propagation of an optical pulse
in a DM fiber is described by a nonlinear Schrödinger
equation with periodically varying dispersion d�z�:

iuz 1 d�z�utt 1 juj2u � 0 , (1)

where u is the pulse envelope, z is the propagation
distance, and all quantities are made dimensionless.
Consider a two-step periodic dispersion map: d�z� �
�d� 1 d̃�z�, where d̃�z� � d1 for 0 , z 1 nL , L1 and
d̃�z� � d2 for L1 , z 1 nL , L; L � L1 1 L2 is a disper-
sion map period; �d� is the path-averaged dispersion;
d1 and d2 are the amplitudes of dispersion variation
subject to the condition that d1L1 1 d2L2 � 0; and n
is an arbitrary integer number.

A nonlinearity can be treated as a small perturba-
tion on a scale of dispersion map period L, provided
that the characteristic nonlinear length Znl of the pulse
is large: Znl ..L, where Znl � 1�jpj2 and p is a typi-
cal pulse amplitude. Then, Eq. (1) is reduced to a
path-averaged Gabitov–Turitsyn model4:

iĉz�v� 2 v2�d�ĉ 1 R�ĉ,v� � 0 , (2)

where
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2 2 v2, s � d1L1 is the dis-

persion map strength, ĉ � û exp�iv2
Rz
L1/2 d̃�z0�dz0�

is a slow function of z on a scale L, and ĉ�v� �R
`

2` c�t�exp�ivt�dt is a Fourier component of c. The
Gabitov–Turitsyn model is well supported by numeri-
cal simulations.8,9

Considering the DM soliton c � A�t�exp�ilz� (A is
real) of Gabitov–Turitsyn equation (2) and then re-
turning to t space, one gets9
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where Ci�x� �
Rx

` cos x�xdx. It was found numeri-
cally3 that the Gaussian ansatz,

AGauss � p exp
µ
2

b

2
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∂
, (5)

where p and b are real constants, is a rather good
approximation of the DM soliton solution. Thus one
can effectively use Eq. (5) as a zero approximation for
solving Eq. (4) by iterations, as was done in Ref. 10 for
�d� � 0. Following Ref. 10, one can make a generaliza-
tion for the case of small but nonzero average disper-
sion, jd0j ,, jd1j, and obtain the following expression
by substitution of zero the iteration (5) into the non-
linear term in Eq. (4) and integration over v1, v2:
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where s̃ � bs and Acorr represents correction from
higher-order iterations. Neglecting Acorr and series
expanding Eq. (6) in powers of t2, one can get a set
of two transcendental equations from the zero- and
first-order terms of this expansion. The respective
equations are
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where c.c. means complex conjugation. Equations (7)
form a closed set of equations for determining the pa-
rameters b and p of Gaussian ansatz (5) for each value
of l and s.
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The solution of Eq. (4) was also obtained by nu-
merical iteration. The n 1 1th iteration, A�n11�, is
given by

Â�n11��v� � Q3�2
n

R�Â�n�, v� 1 �j�d�j 2 �d��v2Â�n��v�
l 1 j�d�jv2

,

(8)

where the functional R�Â, v� is defined in Eq. (3), Qn
is a stabilizing factor given by

Qn �
F̂21

∑
l 1 �d�v2

l 1 j�d�jv2 Â�n��v�
∏
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∏
É
t�0

, (9)

and F̂21 is a backward Fourier transform. A similar
numerical iteration scheme was also used in the study
reported in Ref. 11, except that a Petviashvili stabiliz-
ing factor12 was used instead of Qn. However, the use
of both stabilizing factors results in the convergence of
iteration scheme to the same solution of Eq. (4).

The main obstacle in the numerical iteration scheme
[Eqs. (8) and (9)] is the computation of integral term
R�Â, v�, which generally requires N3 operations for
each iteration, where N is a number of grid points in
v or t space. Here a much more efficient numerical
algorithm for calculation of R�Â, v� is introduced.

Rewriting the kernel of R�ĉ, v� as

sin sD�2
sD�2

�
1
s

Z s�2

2s/2
exp�is0D�ds0, (10)

and using the definition of D, one gets from Eq. (3)
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3 Â�s0��v2�Â�s0���v3�d�v1 1 v2 2 v3 2 v�dv1dv2dv3 ,

(11)

where Â�s0��v� � Â�v�exp�is0v2�. In t space, Eq. (11)
takes the form

F̂21�R�Â,v�� �
1
s

Z s�2

2s/2
ds0G�s0��C�s0��t�� , (12)

where C�s0��t� � jA�s0��t�j2A�s0��t� and G�s0� is an integral
operator corresponding to a multiplication operator
Ĝ�s0��Ĉ�s0��v�� � exp�2is0v2�Ĉ�s0� in v space. It
follows from Eqs. (11) and (12) that the numeri-
cal procedure for calculation of R�Â, v� includes
four steps: (i) The backward Fourier transform of
Â�s0��v� � Â�v�exp�is0v2� for every value of s0. (ii)
A calculation of C�s0��t� from A�s0��t�. (iii) The for-
ward Fourier transform of C�s0 ��t�. (iv) A numerical
integration (summation) of exp�2is0v2�Ĉ�s0��v� over
s0 for every value of v. A fast Fourier transform
requires N log2�N� operations. The total number
of operations for one iteration is 	2MN log2�N�,
where M is a number of grid points for integration
over s0. The typical values for numerical solution of
Eq. (4) were N � 2048 and M � 800. One iteration
on an Alpha 500 MHz workstation requires 	10 s
for 16-byte (32-digit) precision. Thus, the numerical
scheme (i)–(iv) dramatically improves numerical
performance. 20483 operations would take 10 h on
the same workstation. Note that one can generalize
the proposed eff icient numerical algorithm to include
fiber losses and amplif iers.

Figure 1 shows the dependence of a rms pulse
width, TRMS � �

R
t2A2dt�

R
A2dt�1�2, on quasi-

momentum l obtained from (i) the f irst iteration
of Eq. (4) with values of b and p obtained from
Eqs. (7) (dotted curves); (ii) a variational approach
[see, e.g., Eqs. (13) and (14) in Ref. 11 and the refer-
ences in that paper] represented by dashed curves;
(iii) a full numerical solution of Eq. (4) (solid curves).
The explicit expression TRMS � 1�

p
2b for the Gauss-

ian pulse shape is used for calculation of the dashed
curves. The solid curve in Fig. 1(b) represents only
upper branch I of the solution because the numeri-
cal iteration scheme for negative average dispersion
�d� � 20.01 diverges on lower branch II, which is in
agreement with Ref. 11. A time-averaged optical
power P �

R
A2dt was also calculated, and it was

found that P �l� dependence following from the first
iteration and the variational approach11 reproduce a
full numerical solution of Eq. (4) with high accuracy
�	1 error%�. One can conclude that both Eqs. (7)
and the variational approach11 predict P �l� with high
accuracy, whereas TRMS�l� dependence is reproduced
by the f irst iteration of Eq. (4) with better accuracy
�	2 error%� than that of the variational approach
�	40%�.

There is an essential difference between the present
numerical simulation and the numerical results of

Fig. 1. TRMS for (a) s � 1, �d� � 0.01 and (b) �d� � 20.01.
Branches I and II for �d� � 20.01 correspond to two
branches of the analytical solution.
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Fig. 2. DM soliton shape (curve 1) versus Eq. (11)
(curve 2) for �d� � 0, s � 1, and l � 1. A�t� is an even
function.

Ref. 11 concerning upper branch I for the negative
average dispersion. After 	50 iterations of Eq. (4),
a numerical instability was detected in the tails of
the DM soliton for �d� � 20.01. Presumably this
instability was not found in the study reported in
Ref. 11 because only a few iterations were considered
there. Another reason is that Qn is an integral quan-
tity, and the growth of numerical instability in the
tails of the DM soliton makes an exponentially small
contribution to Qn. Thus Qn is not a good parameter
for detection of f ine details of iteration convergence of
DM soliton tails. A finer numerical grid slows down
numerical instability growth but does not stop it. The
instability slow down as �d� ! 0, and for �d� $ 0 there
is no numerical instability. Thus the solid curve in
Fig. 1(b) for �d� � 20.01 can be formally attributed to
the DM soliton, and the question about the existence
of a DM soliton for the negative average dispersion is
still open. It is possible that the instability within the
numerical iteration scheme results from a resonance of
DM soliton tails with linear waves.11 However, there
is another alternative, that the DM soliton solution
does not exist for any negative average dispersion
value and that instead of a DM soliton one can observe
a long-lived quasi-stable structure. Note that the
existence of the DM soliton of Eq. (4) for nonnega-
tive average dispersion was proved in Ref. 13. In
addition, it was proved in Ref. 14 that, even if a DM
soliton exists for �d� , 0, the DM soliton cannot realize
a minimum of the Hamiltonian of Eq. (2) for fixed P ,
indicating that the DM soliton is unstable. A related
result15 is the nonexistence criterion for a periodic
solution of the Eq. (1) for a negative enough average
dispersion. However, Refs. 13–15 do not give any
statement about the existence of a DM soliton for
small negative �d�.

Figure 2 shows a typical DM soliton shape. This
is, to the best of my knowledge, the first high-preci-
sion numerical solution of Eq. (4). Note that the solid
curve’s dips do not reach the t axes only because of
the finite size of the numerical grid. One can conjec-
ture from Fig. 2 that the asymptote of the DM soliton
is given by

Aasymp�t� � f �t�cos
t2�a0 1 a�t���exp�2bjtj� , (13)
where a0 and b are constants and f �t��jtj and a�t� are
slow functions of t. An analysis of fast oscillations
in the integral term of Eq. (4) makes it possible to
show that f �t� � cjtj 1 O�1�, a0 � 1��2 s�, and a�t� �
a1�jtj 1 a2�t2 1 O�1�jtj3� for jtj ! `, �d� ! 0, where
c, a1, and a2 are real constants. The dashed curve in
Fig. 2 shows the A2

asymp�t� dependence of c � 11.9654,
b � 3.04515, a1 � 1.41364, and a2 � 1.51023, which
is in very good agreement with the asymptote of the
numerical solution of Eq. (4) (solid curve). Thus the
envelope of the DM soliton’s oscillating tails decays
exponentially, and the oscillations are described by a
quadratic law. Note that asymptotic solution (13) in-
cludes a dependence on jtj, which is nonanalytic at t �
0, and thus this solution cannot be extended to t � 0.
Instead, Eq. (13) needs to be matched with the approxi-
mate solution obtained from Eq. (6), which is valid for
small t. Also, it should be mentioned that asymptotic
solution (13) differs strongly from the asymptote of the
first iteration given by Eq. (12) of Ref. 10. This re-
sult indicates that the f irst iteration is a good approxi-
mation of the DM soliton solution only for small t.
Detailed consideration of the asymptotic solution is
outside the scope of this Letter.
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